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ABSTRACT

Delphi, a+ a procedure for aggregating judgments under uncertainty,
has suffered from the lack of an underlying theoretical framework, especially
one that relates group estimates to decision processes. Attempts to iniroduce
group judgment into existing theories of decision have run into difficulties
exemplified by the Arrow impossibility theorem for group preferences, and an
analogous theorem by the author demonstrating the non-existence of a general
method of aggregating probability estimates.

It is shown that consistent group preference functions can be formulated
by the use of anchored scales, i.e., individual preference scales with fixed
reference objects. No general resolution of the aggregation problem for prob-
abilities appears feasible, but a justification for the use of group prob-
ability judgments can be made, based on a family of theorems to the effect
that the accuracy of a group judgment is always greater than (or at worst
equal to) the average accuracy of the indiridual Judgments. Some empirical
data, and some analytical results, indicate that these aggregation rules are

more generally applicable, and more powerful than has been assumed in the

past.
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GRUUP DECISION THEORY

In the past quarter century there has been rapid progress in the theory
of individual decision making under vncertainty. One of the more widely

accepted points of view is that of decision analysis, or as it is sometimes

called Bayesian analysis. This point of view involves the notions of subject-

ive probability, utility, and the decision rule, maximize expected utility.

(1) The theory in its present form stems from the theory of game:; in fact,

it can be considered the one-player v:rsion of game theory. However, it is,
like the theory of games, an extension of a much older tradition concerned with
rational 2conomic decisionmaking.

In contrast, group decisionmaking has proved surprisingly intractable,
Attempts to formulate a theory of group decisions have run into a spate of
problems that could loos-'y be characterized as paradoxes of aggregation, It
might be thought that a reasonable tactic would be to adopt the decision

analysis framework and substitute the phrases group probability judgment, and

group utility for the corresponding individual terms — in fact, this tactic has

been suggested by a number of workers in the field. (2) Unfortunately, as the
scatological saying has it, when this 1; tried, things hit the fan; troubles
break out all over. Perhaps the best known of these troubles is the theorem

of Kenneth Arrow which asserts that there does not exist a general method of
aggregating individual preferences into a consistent group preference relation.
(3) This appears to cut the foundation away from the notion of group utility,
Some years ago I proved an analogous theovem showing the impossibility of

a general group probability function. (4) And, as if that were not enough,
even 1if the;e were no special problem with group utilities and group prob-

abilities, difficulties can arise with the decision rule.
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Figure 1 illustrates a typical difficulty of this sort. There are two
individuals, 1 and j, who are trying to select between two courses of action,
A and B. The outcome of the actions can be influenced by the events E or
non-E. Eich individual hais his own estimate of the probabilities of the
events displayed above the matrix, and each has his own assessment cf the
utilities of the outcome. The utilities for i are in the upper left of the
boxes, the utilities for 3 in the lower 1ight. The sma'l insert boxes show
the average. The value differences can he interpreted either as differences
of interest — i.e., each would receive different payoffs for each outcome — or
as different judgments of the value of the outcomes to the pair join: ly.

Under either interpretation, both individuals think action A 1is p:>ferable
to action B. This is indicated by the third column, where the expected ucil-
ities for each action and each individual are listed. However, if we take the
average of the two probability estimstes as the group probability, and the
average of the two utilities as the group utility, then the group decision
would be that action B is preferable to action A.* This violates the silver
rule of economic decision theory, namely the Pareto unar.imity principle.** (5)

These three kinds of difficulties — with preferences, with probabilities,
and with the decision rule — by no means exhaust the list of troubles that
arise when group notions are introduced Iinto decision theory. Individuals can
disagree, and almost inevitably do disagree in practice, about any aspect of

the decision situation. Figure 2 illustrates the simplest model of a decision

*

The precise form of the aggregation of probabilities and utilities is not
critical for the example. Other functions such as the gecometric mean or
the median could be used and similar "paradoxes" could be generated.

The golden rule, of course, is maximize expected utility.
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problem; a set of potential actions A

{» @ set of uncertain states of the

world E.1 ("E" for event) and a matrix of outcomes Ioijl where 0,, is the

3

result of implementing action Ai when EJ i1s the state of the world. Indi-

viduals involved in a decision can disagree on the appropriateness of the

list of actions, on the relevance of the states of the world, and on the

outcomes — i.e., whether those precise consequences would indeed occur if the

action were taken. The more general disagreements about the nature of the

problem I have called the "point of view" issue; each individual has his own

model. (6).

Most formal analyses of decisions start with the problem already formu-

*
lated as a matrix as in Figure 2, and the theory then deals with how to go

on from there. Going on from there, for decision analysis means assigning

probabilities to the events, assigning values or utilities to the outcomes,

computing the expected outcomes of each action, and selecting the action with

the highest expected value.

I will follow this procedure and assume that a statement of the decision

problem in terms of a matrix is given. Each individual has his own prob-

ability distribution over the events, and his own preference relation on the

outcomes. The question then becomes, from the point of view of the group,

what is the best way to assign probabilities to the events, what is the best

way to assign utilities to the outcomes, and what is an appropriate decision

rule: Of course, the word best is just for show. We're not that far along yet,

The difficulties that arise when the decision concerns a group and the

group disagrees on the relevant numbers are all of one general sort:

e ———————

*
In some vzrsions, a more general framework
used as the starting point. This more general framework is not germane

to the present investigation, since all of the difficulties already show
up ia the simpler case of the decision matrix,

» the decision tree, is




There 18 a set of individual judgments {Ji}’ where i indexes the individual

memb2rs of the group. We would like to define a function F(J), J = (Jl,...,Jn)

which aggregates the individual judgments into a group judgmen.. We should

like to fulfill several kindg of conditions:

1. Cfubstantive conditions:

F should be the same sort of thing {

R VR TR

as the individual judgments Ji' Thus, if the Ji are probabilicies,

F(J) should be a probability. If the J; are preferences, then F(J)

should be a preference relation, etc.

2. Consistency conditions: By consistency is meant coherence

between the individual judgments and the group judgment. Con-

sistency for individual judgments separately, and for the group

Judgment separately are presumably part of the substantive condi-

R v ————
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tions. A typical consistency condition is the Pareto unanimity

principle mentioned earlier; that is, if all the J

 are identical,

then F(J) = Ji'

3. Performance conditions: If there is a figure of merit for

the individual judgments, then the group judgment should do reason-

ably well, compared with the individual judgments, on that figure

of merit. As an obvious example, if all the individual judgments

are declarative Sentences, and if they are all true, then F(J) should

*
not be falsge,

e

There 1is some unclarity in the liter
some investigators, the group proces
a common judgment — a way of circumventing disagreement. The simple
attainment of agreement is considered a sufficient good to justify

"compromise” on excellence, In the common lore, a committee is expected to 3
do rather poorly, to degrade the best capabilities of the individuals,

to design a camel when you want a horse. On this view, if the group can

be motivated not to design a camel, that is triumph enough. Hopefully,

the following discussion will persuade the reader that more should be

expected of a group than Just that it not louse up the decision.

ature on this type of condition. For !
8 1s primarily a method of arriving at ]

6




In the literature on group decision there has been little mention of
conditions of type 3. There are at lgast two reasons: First, there 1is no
generally accepted performance measures for preferences or values — no way to
say that one individual's value judgment is correct and another's incorrect.
In this respect, value judgments are ad 1lib. Secondly, the well-known dif-
ficulties arise from trying to meet conditions ¢f the first two types; you
can't get as far as type 3.

One thesis of this paper is that the sltuation can be reversed; for those
cases where performance criteria exlst, performance can be used to justify

overlooking some inconsistencies between individual judgments. This could

be called the Emerson principle.* If the aggregation procedure produces a
judgment of higher excellence than the individual judgments, this fact can
override some inconsistencies between the two.

A certain amount of luck enters at this stage. Since there are no
performance criteria for preferences, the game would be lost if the Emerson
principle were needed to get around the paradoxes of aggregation for prefer-
ences. As it happens, there is a natural resolution of the Arrow paradox

without recourse to performance criteria. i
Arrow's proof of the impossibility theorem is too extensive to repro-

duce here, but a glance at the assumptions leading to the theorem is in order.

D

* Emerson rather blew it. The quotation (from Bartlett) is "a foolish
consistency is the hobgoblin of little minds...." A somewhat less
restricted formulation might be: Fear of inconsistency is a hobgoblin
(whether of little or big minds). A dramatic case in point 1is the dis- |
position of the number zero. There was a flerce debate for two centuries
on the status of zero. Accepting it as a number opened the way to
contradictions, but the advantages of having zero within the pale were
evident. In the end, the pragmatic side won out, with the problem of

contradictions "solved" by the remarkably ad hoc rule, "don't divide
by zero."




What I will contend is that there is nothing unacceptable about the intent of
the assumptions; rather, it is an overstrict interpretation of the notion of
ordinal which creates the problen.

The elements of the model are: (1) a set X = {x,v,2z,...} of objects to
2 be ordered.* (2) a set I = 11,2,...,n} of n individuals. (3) a set
K = {Rr, R', 5...} of vectors of individual ordering relations over X. Each
R = (Rl,...,Rn) consists of n individual orders. Thus xRiy means individual
1 prefers x to y or is indifferent between them. A super-fixed arrow
indicates strict preference, i.e., ;ﬁiy means xRiy and not yRix. (4) a func-
tion F(R) which generates a group preference function over X, depending on

the vector of individual preferences R.

A. Substantive conditions

l. For each R in K and each Ri in R,
a, Ri is a complete order over X
b. F(R) is a comrl:ite order over X

2. #émong the R in K there are all possible orderings
by n individuals of three objects.

B. Consistency conditions

1, Monotonicity, Define<5 to be a forward shift of x with

respect to R 1f: R is identical to R except for x;
whenever xRiy, then ggiy; and whenever iﬁ;y, then ig;y.

If R 18 a forward shift of x with respect to R, then if

——

xF(R)y then xF(R)y.

For the problem of social values, or for generating a social welfare
function, X would be interpreted as states of society. However, for
addressing the problem of aggregation, the precise nature of X is
not germane, hence is is referred to here as "objects".
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2. Independence of irrelevant alternatives, If R is identical

to R on some subset B of X, then F(R) is identical to

F(R) on B,
3. Non-imposition. For any pair of objects x, y, there is an
) R in K such that xf?k)y. 1
4, Noun-dictatorial. For any individual i, there is a puir of
objects x, y and an R such that iﬁiy and yF(R)x.
’ A relation R is a complete order over a set of objects X if two condi-
tions hnld: ’
1. Comnexity. For every pair of objects x, y, in X, either
’ XRy or yRx.
2. Transitivity. If xRy and yRz, then xRz.
The second substantive condition requires that for at least three
] ’ objects, any possible combination of individual preferences can occur, and
I the group preference relation is defined for all those possibilities, It
1s a condition to assure a certain amount of generality for the group
1 ’ preference function.
y
| The first consistency condition is a sort of sure-thing principle.
If x is preferred to y on the basis of a set of individual relations R, ?
' and another set R treats x at least as favorably, then surely x is pre-
ferred to y on the basis of R.
The second consistency condition is a crucial one. It imposes
4 a certain stability on the group preference. Thus if x is preferred to
y by the group, and if attention is restricted to a smaller set of objects,

still containing x and y, the group preference should not reverse. This is

the condition that is violated by most well-known aggregation methods. i
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The third consistency condition is intended to assure that the group
preference relation is not determined by some rule independent of the indi-
vidual preferences.

The last consistency condition requires that the group preference func-
tion not be determined by the preferences of a single individual (dictator.)
It asks only that for any individual, some pair of objects and some set of
; individual preferences exist such that the group and the individual disagree.

As I remarked earlier, the general intent of the consistency condition

appears to be desirable. However, the conditions have the apparently devasta-

ting effect that there is no group preference function which fulfills them.

! To see how to get out of the paradox, we need a small aside on measure- w
ment. In many discussions of measurement in economics, a broad distinction

is made between ordinal and cardinal scales. The former are purely relational;

if numbers are coordinated to the scale, they have only rank-order properties. v

] In technical terms, the numbers are fixed only up to a monotonic transforma-

S e e

tion. Cardinal scales, on the other hand, have numerical properties. Several
varieties of these may be distinquished (interval, ratio, etc.) depending on -
the degree to which the numbers are fixed by the measuring process. What is

overlooked by this classification is the role of reference objects or stand-

ards. For physical interval scales such as temperature, the scale is not ‘1
fixed until two different physical states have been specified - e.g., the |:
1 freezing and boiling points of water at sea level — and two numbers — e.g.,

0 and 100 -~ have beer assigned to these two states. Until this coordination

of numbers and physical states '.as been performed, the scale cannot be used

to measure the temperature of a given object. For example, if an individual

states that his temperature is 46, this tells you nothing until you know his

reference states and his coordinatvd numbers for those states.

10




The numbers coordinated with reference objects are often called "arbi-
trary constants.'" This phaseology car be misleading. In a purely mathe-
matical sense, the numbers are arbitrary, but that does not mean they are
dispensable. Which states and which numbers will be employed as references
can be chosen '"freely" (except for practical considerations of feasibility
and convenience) but some choice must be made before the scale becomes a
measuring instrument.

Almost completely overlooked in the economic literature is the role of
reference objects for ordinal scales. A typical physical ordinal scale is
the Mohs hardness scale. This scale is associated with the relation scratches;
1f object x scratches object y, then x is harder than y. This is the basis
of the well known test of a stone to determine if it is a "gem" by seeing
if it will scratch ordinary window glass. Figure 3 shows one widely used
form of the scale. Each of the ten iteus wili scratch all of those below
it. However, the associated numbers are purely ordinal — they are rank
orders and nothing more. To say that the hardness of a fingernail is be-
tween 2 and 3 merely means that a fingernail will scratch gypsum and be
scratched by calcite.

Such an ordinal scald with a fixed set of reference objects, can be

called an anchored scale. An anchored scale consists of a set of objects

X, a specified set of anchors A, and an ordering relation R. Usually A

would be a subset of X. The scale value S(x) cf an object x is the highest

of the set A that has the relation R to x. As illustrated in Figure 4,
A = {a,b,c,d} and S(x) = a. For some purposes it may be convenient to

attach numbers to the anchors, but these numbers are determired only up to

Ly 4

a monotonic transformation.

11 g




= NWDBOTONRWOWO

MOHS HARDNESS SCALE

DIAMOND
SAPPHIRE
TOPAZ
QUARTZ
FELDSPAR
APATITE
FLOURITE
CALCITE
GYPSUM
TALC

<— WINDOW CLASS

<+— FINGER NAIL

Pigure 3

12




| ORDINAL. SCALE

A ={abcd}

S(x) = a Sly) =m

Figure 4




One way to interpret the Arrow theorem is: If you formulate a group
preferznce function which disregards reference objects, it will not in general
be compatible with the individual preferences. To be useful, that statement
needs to be turned around to say: If indiv‘duals express their preferences
in terms of anchored scales, then a group anchored scale can be formulated
which fulfills the analogue of the Arrow cornditicns for anchored scales. This
will now be investigated.

A group anchored scale can be generated from.a set of individual anchorei
scales as follows: The anchor set for the group is the set of all n-tuples
of individual anchors, i.e., the group anchor set A is the cartesian product
of the individual anchor set3, A = AIXAZX""’XAn' The idea is illustrated
for two individuals in Figure 5. Fach pair of individual anchors forms a
reference point for the group. The pairs sort the objects in X into boxes,
where if a and b are consecutive anchors in individual 1's scale, and ¢ and d
are consecutive anchors in individual 2's scale, the box cunsists of all x's
such that lex but not aRlx and dsz but not chx. The scale value of an
object x is the pair of individual scale values. Illustrated in Figure 5
is the case S(x) = (c,d).

There 1s a natural partial ordering of the objects given a group scale,
namely the partial order defined by unanimity: 1if Si(x)R Si(y) for every 1,
taen x is preferred by the group to y. The only subitantive condition not
fulfilled by this partial order is connexity. What needs to be shown is
that this natural partial order can be extended to a complete order without
violating the analogue of the consistency conditions for anchored scales.

The group preference structure, expressed in terms of anchored scales

has the elements: a set of objects X; a set of individual preference scales
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K = {S,S',§,...], vhere each S = (Sl""’sn) is associated with anchor sets
(Al,...,An) and preference relations (Rl,...,Rn); a group preference function
F(S) associated with a group anchor set A = AIXAZX...XAn; and a group prefer-
ence relation G, Each ind!vidual preference scale Si is based on the associ-
ated preference relation Ri' In the group case, the order of derivation is
reversed. A group preference scale is generated over the anchor set A,
which then imposes a group preference relation on the entire set X. The nota-
tion designating scales and relations becomes somewhat involved. The conven-
tion will be followed that preference relations associated with scales will
be represented by the quasi-arithmetic symbols > and >. Differences betweeu
individual and group scales will generally be clear from the arguments. Thus
Si(x) > Si(y) states that individual i prefers the scale value of x to the
scale value of y (and thus, prefers x to y). F(S)(x) > F(S)(y) states that
the group prefers the group scale value of x to the group scale value of Y.
Where no ambiguity exists, this statement will be abbreviated to S(x) > S(y).
The basic modification of the Arrow conditions to make them aspropriate
for anchored scales are: (a) The anchor sets for all individuals are fixed,
i.e., for any Si’ §1 in K, Ai = éi'* (b) The objects comprising th:e anchor
sets arc exempted from the consistency conditions. (c) For all other objec:s,
the conditions are expressed in terms of the scale values of the objects.

Thus, the modified Arrow conditions are:

®

This does not imply that the anchor sets for different individuals are
the same. In general, anchor sets for different individuals may be
entirely distinct; although in practice there are obvious advantages

to having common anchor sets. (a) does imply, of course, that the
group anchor set is fixed,

16




Substantive condicions.

Each Si in K and F(S) 1is an anchored scale.
There are three objects such that all possible
orderings of their scale values by n individuals
occur in members of K,

Consistency conditions.

1. Mcnotonicity. Define a forward shift of x by S

with respect to S as: S is identical to S except

for x. Whenever Si(x) > Si(y) then §i(x) > §i(y)

and whenever Si(x) > Si(y) then §i(x) > §i(y).
If S is a forward shift of x with respect to §
then, whenever S(x) > S(y), S(x) > S(y).

Independence of irrelevant alternatives. If S is

identical to S on the subset B of X, then F(S) is
identical to £(S) on B.
Non-imposed. For any x and y in X, there 1is an §
such that S(x) > S(y).

Non-dictatorial. For every i, there is an x, y and S such

that Si(x) > Si(y) and S(y) > S(x).
Rather than look for conditions which guarantee the existence of a group
preference scale, it is simpler to exhibit a specific group scale which satis~
fies the modified conditions, and thus acts as an existence proof. One appro-

priate scale is anchored sum of ranks. Let each individual coordinate rank-

order numbers with each of his reference objects. Designate these rank-order




numbers by S:(x).* It is convenilent to let the rank order numbers start with
1 for the least preferred object. The group scale number is defined by S*(x)
= § S:(x). The group preference relation is defined by S(x) > S(y) means

s* ) > s"(y).

Since this procedure assigns a number tn every object in X, and the arith-
metic inequality is a complete order, a complete group preference order is
defined on X. Monotonicity 1s assured since the suri is monotonic in its
summands, Consistency condition 2 is fulfilled directly; the grcup scale value
does not change when only a subset of objects 1s considered. Condition 3 is
satisfied by invoking substantive condition 2 — there is a pair of objects
X, y such that S:(x) > S:(y) for every 1 — and the sum fulfills the unaminity
principle. Substantive condition 2 also requires that each individual have at
least two reference objects (three pctential rank order numbers) and hence
non-dictatorship is fulfilled. There is a pair of objects x and y such that
53(x) = S;(y) + 1, but S;(y) . S;(x) +2 for ] # 4. Hence IS (y) = IS (x)

+ 2(n-1) - 1. Thus x is preferred to y by individual i, and y is preferred
to x by the group.

This completes the demonstration that anchored sum of ranks fulfills the
analogues of the Arrow conditions for group preference scales, and is thus

*k
an existence proof for group preference functions.

*This will not work if the anchor set is infinite at both ends, or if dif-
ferent individuals have anchor sets infinite in different directionms.
There is no problem dealing with infinite anchor sets, but they are over-
looked here because the essential difficulties expressed by the Arrow

theorem arise with finite sets.
*k
There may be some uneasiness that anchored sum of ranks is not purely ordi-

nal in the sense that the group function depends on the numerical values of
the rank order numbers. Thus, if one individual multiplied all his rank
order numbers by some large constant, he would become an arithmetic dictator.
This objection misconstiues the role of the rank order numbers for the
existence proof. They are simply a device to define a group scale which is
consistent. Notice that once this group scale has been defined, the rank-
order numbers can be "thrown away" and the group scale applied in a purely
non-numerical fashion.,

18

ot i o it e e ol i, -




——

&

Anchored sum of ranks is just one out of an infinite number of consi: tent
group scales that can be defined. 1In a way this is disappointing. The selec-
tion of a specific group function in practice would depend on other properties

than those contained in the Arrow ~onditions.

Aside on Electing a President

As 18 well known, the type of difficulty expressed in the Arrow theorem
has serious implications for all group decisions involving voting-like procedures,
The most serious are the dominating role of the agenda when sequential (progres-
sive elimination) techniques are used (7) and the "spoiling" effects of
"irrelevant" candidates. In the French style of election where there is a
runoff between the two leading rontenders if there is no majority candidate,
there are many plausible "scenarios" which suggest that the candidate most
highly rated by the total electorate can be eliminated on the first round. It
is even easy to design situations in which the least preferred candidate out of
three is elected (c.f., the U.S. example below.)

In the United States, the situation is obscured by the electoral college,
and the fact that there are usually only two major candidates. However, the
issues still lurk in the background. Cunsider, for example, the election of
1912, with Wilson, Taft, and Roosevelt as the three major candidates. We don't
have a record of voter preferences among these, just the record of first prefer-
ences, A plausible assumption would be that most of those who voted for Taft
or Roosevelt would have preferred either to Wilson, and those who voted for
Wilson would have preferred Roosevelt to Taft., There assumptions generate

the preference table which follows.
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Wilson Roosevelt Taft Number:(xlO )

Wilson 1 2 3 6.3
Roosevelt 3 1 2 3.5
Taft 3 2 1 4,2

Straight majority vote on this table would lead to the preference order
Roosevelt~Taft-Wilson. Sum of ranks (weighted by numbers of voters) gives the
order Roosevelt-Wilson-Taft. In either case, Roosevelt is the "preferred"
candidate, and in the case of majority vote, Wilson is the least preferred.

This type of mis-selection could be eliminated if anchored scales were

used. In the case of the U.S. presidential elections there is a natural set

of anchors, namely, the 1list of all past presidents, A plau.ible voting

scheme would be to have each voter rank-order all the past presidents in
terms of his perception of their desirability as presidents., This could be

done at the voter's leisure at any time between elections. There is no

necessity that the rank orders of any individual agree with those of any

*
other. At election time, each voter casts his ballot by reporting the posi-

tion in his scale of each candidate. The candidate receiving the highest

sum of ranks is elected.

The scheme will work for as many candidates as the voters have time to
rate. Tt has the side benefit that the final tally would give a fairly

diagnostic reading on the voters evaluation of the candidates.

There is a possible weakness in the procedure as described., A signifi-

cant segment of the voting public might attempt to bias the ratings by, for

example, giving the highest possible rating to their favorite candidate, and

.

X
Since there are 38 presidents, there are 38! = 5,23 x 1044

permutations,
which is quite enough for each voter to have a

different ordering!

20




rating all the others at the lowest level. This would vitiate the procedure.
There is a simple way around this difficulty, one that is perhaps a little
cumbersome, but not without attractions of its own. The resolution is affected
by starting with a large slate of initial candidates — say 50 for purposes of
illustration — all of which are rated by the voters. After all ratings are in,
a small final slate — say 5 — are selected at random. The candidate in this

final slate with the highest sum of ranks would then be declared president,

p The numbers 50 and 5 are just illustrative. Some statistical engineering
could be done to determine the minimal sizes for the two slates keeping to an
acceptable level the probability that the finalists were not all from the

’ bottom of the heap. I would imagine that a lottery of the type suggested
would be a dramatic event. It should have a very high rating if telecast live.

The question whether the procedure would be feasible for the "average

' citizen" doesn't appear very serious. It would require somewhat more back-
ground and a little more time than now appears to be devoted to voting by the
electorate.

‘ The rank order scale is itself relatively crude, and could probably be
improved upon. However, this is a second order consideration (especially
with 70 or so million voters) compared to the stability and consistency

' afforded by the anchored rating procedure.

Note on Numerical Utilities
2 Once having found that consistent group preference functions can be

generated, there is no obvious reason why the advantages of cardinal utility
functions should be exploited. The subject is treated much more fully else-

where (8). I will content myself with two points.
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If it is assumed that each individual membar of the group has a numerical
utility function on the set of objects X (e.g., of the sort elaborated by

von Neumann and Morgenstern, where the scale is determined up to a linear

! transformation (9)) then individual reference sets need contain only two objects.
This is a great simplification over ordinal scales where a large set of refer-
ence objects might be needed to determine the individual scales with suffici-

ent precision. More significant is the fact that reference sets for general

social value scales are difficult even to imagine — most individuals have not
had enough experience with enough states of society to designate a well-defined
set of "objects.”" The assumption that each individual rates social states
solely in terms of his cwn consumption appears to be a radical oversimplifica-
tion. Although the assumption that each individual has an interval utility
scale on states of society also appears to be highly unrealistic, some of the
implied conditions for social utility scales might be more palatable than the
assumption that society could examine the individual anchor sets cf large
numbers of individuals and select a social ordering of the'cartesian product.
Under the assumption of individual cardinal utility scales if any of
several elementary additional assumptions are made, the form of the group
utility function becomes sharply restricted. For example, if the assumption
is made that when the group finds two objects x and y equivalent, then it is
indifferent between either and any probability mixture of the two, then the
group utility function takes the form of a weighted sum of the individual
utilities; i.e., if Ui is the utility function for individual i, and U is the
group utility function, then U = ZwiUi. The W, in this case perform a dual
role of rescaling each individual utility to conform to the others, and also

of determining the propurtionate share of each individual in social benefits,
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Although a number of objections have been raised against the linear social
utility function, it has some strong advantages. This is especially true if
it is assumed that the opportunity space (space of achievable outcomes) is
concave, in which case some of the more salient criticisms become "academic" —
i.e., are concerned with cases which are not likely to arise,

If it is assumed that an absolute zero can be defined for individual
utilities — possibly complete destitution guarar.teeing death — then a multi-
plicative form for the group utilicy looks attractive, In symbols, U = ¥ ini.
Here the weighting factors appear as exponents., As John Nash pointed out
long ago, the product has the desirable feature that it is invariant under
multiplicative transformations (10), and hence, given the assumption of an
absolute zero, invariant under all permissable transformations. Unfortunately,
the product is not compatible with the assumption of unamimity on probability

mixtures,

Performance Criteria for Probabilities

The situation with group probability estimates is quite different from
that with group preference judgments. It looks very unlikely that any
"natural” resolution of the inconsistencies between individual and group
estimates can be found.* The reason is that the constraints on probabilities
are much more severe than those on preferences. In particular, probabilities
are fixed numbers allowing no tranformations; i.e., if p is a probability
measure on a set of events, there is no function f(p) # p which is also a

probability measure on the same set of events. For group estimates, the only

*I say unlikely, rather than impossible because there is the outside chance
that some measure of uncertainty other than probability will turn out to
be both a reasonable way to express incomplete information, and will
aggregate in a consistent fashion.
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identity function is the dictatorial one, f{p., p yeeesP ) = p ., where 1 is a
y 1 2 n i

given individual.

There are no dramatic paradoxes which ari~e from this situation. Simple
illustrations of the type of difficulty: The average of a set of probabilities
fulfills the requirement that probabilities of exclusive events add; however,
it does not fulfill the requirement that the probability of the conjunction of
two independent events is the product. The converse is true for the product
as an aggregation rule — ir does not sum to one for exclusive and exhaustive
events but is multiplicative for conjunctions.

If there .s any hope of "rescuing" group probability estimates from
inconsistency, we apparently need to invoke the Emerson principle. This
requires specifying a figure of merit for probability estimates. In the past
decade or so there has been a rapid development of a theory of probability
asgessment which furnishes an appropriate criterion.

There are several directions from which this theory can be approached.
One of the most perspicuous, if not perhaps the most profound, begins with
the desideratum of keeping the estimator "honest." The theory consists of a
teward scheme which will motivate the estimator to report what he believes
to be the relevant probabilities. Several basic notions are needed to
expound the idea.

{Ej} A set of (exhaustive and exclusive) events for

which probabilities are desired.

{Qj} The probabilities on EJ which the estimator

believes.

{R,} The probabilities which the estimator reports.
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{Pj} The (unknown) objective probabilities*

S(R,J) A reward function which, after the fact, pays the
estimator an amount S, depending on the report R,
and the event j which occurs.

To say that S rewards the estlmator for being honest is to say

§ QJS(R,J) < § QJS(Q.J)

That is, the estimators' (subjective) expected reward is greatest when he
(honestly) reports what he telieves. There is a large class of functions
which fulfill this condition. These have been extensively studied (12, 13,
14). Among the better known are the logarithmic scoring rule, S(R,3) = log RJ
and the quadratic scoring rule, S(R,j) = 2RJ - §R§. It is easy to see that
the sum of any two scoring rules is a scoring rule, and any linear transforma-
tion, aS + b, where a and b are constants, is a scoring scheme. Various
names have been given to these reward structures = reproducing score,
admissible score, probabilistic score, proper score, honesty score, etc., I
will use the short2st — proper score.

There are a number of properties of proper scores which can be derived
fairly directly from the definition. S rewards the estimator not only for

being honest, but also for being accurate; 1i.e.,

§(P,3)

Z PJS(R,J) < I P
] 3

This follows immediately from the definition by substituting P for Q. Thus,

the objective expected score is a maximum when the estimator reports the

objective probability,

*There is some dispute whether objective probabilities can be defined for
all types of estimates of interest in decision theory. Rather than arguing
the point here, I simply examine the consequences of assuming that there is
an objective probability. For a fuller discussion see (11).
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A proper score rewards the estimator for being precise, i.e., for
reporting probabilities close to 0 or 1. This results from the fact that
§ Qi$(Q,J) 1is convex. (15)

A proper score can be thought of as an extension of the notion of truth-
value to the case of probabilistic estimates. For declarative assertions —
"It will rain tomorrow" — the score is two-valued, true (or 1) if the event
occurs, false (or 0) if the event does not occur. For probabilistic state-
ments — "The probability of rain tomorrow is p" — the score is S(p, rain) if
it rains and S(p, not-rain) if it doesn't rain. The two-valued scheme has
an analogue among proper scores, namely, the score rule that pays 1 if the
event with maximum reported probability occurs, and O othe-wise. In a sense,
this is the score rule used in grading objective examinations, if we assume
that the student checks the alternative that he thinks has the highest
probability of being true.

It 18 convenient to divide proper scores into two soris: informational

and economic. Informational scores are those which depend only on the
reported probabilities and the event that occurs and on no other properties of

the situation. Ecoromic scores depend not only on the reported probabilities
but also on the decision situation, e.g., on the payoff resulting from a
decision.

Among the informational scrres, there is a special group which have been
considered the most appropriate for scientific studies, and might be labeled

scientific scores. These have a property that can be called exactness, i.e.,

the scores motivate the estimator to furnish exact report of his baliefs.
The two-valued score mentioned above motivates the estimator only to report a

higher probability for the event he thinks most likely than for the others.

26

IR TR

j:
[}




An exact score clearly must have a continuum of values. The logarithmic and

quadratic scores mentioned above are exact. Mosc of the scientific scores

have an important addiiional property; namely, S(R,j) is concave in R.

Informational N-heads Rules

One way to express the Emerson principle for probability estimates is
to say that the group will perform better, in terms of prababilistic scores,
' than the individual members of the group. Given a set of estimates {QkJ} by
J

a group (k indexes individuals), the average objective expected score is

OES = 1/n I L P 5(Q )=ZIP1l/n L S(Q, .)
kj h| k,] i h| k k,j

I have assumed each individual is honest and reports his believed probabili-

ties Qk‘ In the more interesting cases, P is unknown, and the average objec-

tive expectation cannot be computed. However, we can ask, under what cir-

cumstances is the average expecced score of the individuals less than the

expected score of the group; i.e., when is OES less than J Pj(a,j) where

Q= 1/n £ Q,, independently of P and {Q }? It is not difficult to show that
k k k

e

a2 necessary and sufficient condition for the inequality to hold for all P

and {Qk} is that S(Q,j) be concave in Q.

Hence, for those scientific probabilistic scores which are concave,
such as the log score and the quadratic score, the result holds that the

objective expected score of the group will always be greater than or at

worst equal to the average expected score of the individuals. Over a large

number of estimates, the observed total score of the group should be larger i

than the average total score of the individual members.
I call a statement to the effect that a group judgment receives a

higher performance rating than the sverage rating of the individual judgments

2 L a1 *—Am‘J
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an n-heads rule (generalization of the adage "two-heads are better than one.')
The elementary n-heads rule enunciated above is just one of a large family of
such rules, where the precise form of the rule depends on the kind of estimate,
on the scoring rule, on the aggregation rule for individual estimates, and on
the kind of expectation employed (absolute,* objective, or subjective.)
Somewhat more definitive n-heads rules can be derived if the method of
aggregation is tailored to the form of score rule. For example, the geometric
mean "fits" the logarithmic score rule better than the mean. Thus, it is
shown in (16) that the objective expected log score of the geometric mean is
precisely equal to the average expected score of the individuals plus a
term D which is a function of the dispersion of the individusl estimates
but is independent of the objective probabilities. The higher the dispersion,
the greater D — i.,e., the greater the advantage of the group score over the
average individual score.
The various n-heads rules would appear to furnish a justification for the
utilization of group probability estimates, even if there is some irconsistency

between the group estimate and the individual estimates.

Economic N-heads Rules

The results of the previous section concern a small subclass of proper
scoring rules, namely those that are concave, For many decisions, the most
appropriate performance criterion is the payoff as defined in the decision
matrix. This measure does not in general lead to concave functions.

Define an enterprise as a group of individuals who are faced with a

decision matrix as in Figure 2. Various sorts of enterprises can be

_—

*
Absolute means non-probabilistic, a type of rule not examined in this paper.
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1 distinguishted, depending on how the group wishes to proceed, and the degree

of commonality assumed for utility functions. The simplest type of enterprise
i3 one where the individual utility functions coincide, and the group has pre-
determined that they will select one common action. This type of enterprise
could arise from the group having established a group utility function with the
rule that all members will attempt to maximize this function. An analogous

case arises in the more familiar situation of an economic partnership, where

the group utility is just the proceeds of the firm, and each member receives a
proportionate share of the proceeds.

We first establish a general result, namely, that any decision matrix, I8

with a given utility function, and the decision rule maximize expected utility,

is a proper scoring rule for estimates of the probabilities. Let {Q,} be an ;
P 3

estimate of the probabilities for a decision matrix 'Uij"

utility of action A, as a function of Q, Ui(Q)’ is § Q

The expected

1 jUij' We define

®
U (Q,j) as U,, of the action Ai for which Ui(Q) is a maximum. Thus

1)
*

L QjU (Q,3) is the maximum achievable expected utility, given Q. It follows

b

from the definition that

* ®
ZQju () >:L QJU (R,3)
3 3
3 This inequality has precisely the defining form for a proper score rule, where

U*(Q,j) plays the role of S(Q,j).

This score rule has sometimes been called the "piece of the action" rule —
' to be applied to a consultant, for example, who is advising a firm by furnish-
ing estimates of probabilities for relevant contingencies. (17) We are apply-
ing it more generally to rhe case of all concerned individuals, whether comn-
» sultants or members of the firm, where the payoff is some proportion of the
proceeds of the firm. Raiffa has called the rule in this contex: the "naturally

imputed score rule.” (18)
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In the simplest case there is an agreed-on rule that a single action
will be taken. There is no loss of generality in assuming that this action
i1s one which is optimal for a given estimate R of the probabilities.* The
average expected payoff to the enterprise as perceived by the members of the

group will be

] * - %
EU=1/n I T =T =
/n i iju (R,3) 3 1/n E iju (R,J) ;z QJU (R,3)

where QJ = 1/n E ij. Since U*(R,j) is a proper score rule, EU < ; QJU*(Q,j).

This is the simplest n-heads rule for an economic scoring scheme. It can
also be taken as a formulation of an informational n-heads rule, where the
reward function is not concave. Here the relevant criterion is not the
objective expectation, but the average subjective expection -- the expectation
based on the beliefs of the members of the group. This result, although not
as strong as obtained with concave score rules, nevertheless is still fairly
impressive. It states that, even for an enterprise where the payoff may be
specified in terms of "cold cash," if the members of the enterprise disagree
on the relevant probabilities, then the expected payoff of that enterprise,
based on a group estimate of the probatilities, will be higher than the aver-
age expected payoff predicted by the individuals.

This may not satisfy every member of the group, since it is clear that
each individual thinks the enterprise would do better if it folloved his
advice. We can explore this a little further. Suppose we introduce the

notion of the Monday-morning-quarterbacking-payoff (MMQP) as follows:

Irrespective of wvhat the enterprise does, each individual is paid, after the

*
This rules cut the trivial case where an action might be chosen which is
dominated by some mixture of other actions.




fact, some fraction of what the enterprise would have made if 1t had followed
his advice. Without going into niceties here, since we are dealing with
expectations, we will let the phrase "what the enterprise would have made"

be defined by the decision matrix. Thus, each individual k is paid U (Qk,j)

where U is defined by the optimal action given Qk and j is the event that

happens.

Individual k sees the total group as receiving

£zq. U@, )
£y Ja¥ Qg

Taking the average of these perceptions, we have
*
1/n E 92": § ijU (QQ’J) i) § QJU Q j) <n § QJU Q,4)

*
since U 18 a proper score rule.

Even in this disaggregated case, where we have "every man for himself"

to begin with, the average expectation of total group return is maximized by

each individual adopting the same (average) group estimate. This formulation

can be made more realistic by assuming the group agrees beforehand to pool

their earnings and redivide after being paid. An elementary example might be

a group who agrees to engage in a series of gambling ventures. Each makes

his own bets, but the proceeds are pouled. Their average expectation will

be maximized if they decided beforehand to use a group predicion concerning

the outcome of each gamble,

The economic n-heads rule can be extended to the case of a non-commcn

rayoff, retaining the assumption that a common action will be taken. However,

the story is a little monotonous — almost any way you view an enterprise, if

there 18 disagreement on probabilities or utilities, but agreement on the

rule of common action, the expectation of the group judgment is greater than

the average expectation of the individuals.
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Empirical Validation

Most of the results presented so far in this paper are methematical and
have limited empirical content. Given that individual utilities and prob-
ability estimates fulfill the standard substantive conditions, the n-heads
rules follow tautologically.

Nevertheless, there is an understandable reluctance to put complete
trust in such formulations for real life decisions. The desire to see thom
“tried in practice" is strong, and I think justified, even though it is dif-
ficult to specify exactly what the issue is. The Missouri rule "show me"
has a good, final ring to it., 1In part, this impulsion comes from the over-
all simplifications and extrapolations that are a natural part of mathematical
mydels. Although each simplification may seem justifiable separately, there
1s a reasonable sense in which it can be asked whether every-day decisions
are expressed sufficiently well by the standard decision matrix so that the
predictions of theory can be trusted.

Unfortunately some of the most interesting results, especially those
concerning economic n-heads rules, were generated only within the last few
montks, and there has not been sufficient time to carry out relevant experi-
ments Most of the experimental studies relating to group judgment have been
conducted within a different conceptual framework. However, it is worth
trying to see if some previous experimental results can be interpreted in
light of the present analysis to give an initial empirical back-up to the
theory.,

A first look suggests a rather surprising possibility. The results of
at least two studies concerning betting appear to support an even stronger

n-heads rule than any derived in the previous sections. This result is that
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the observed payoff for the group estimate is higher than the observed average
payoff over individuals. Although the theory does not reject this result for
any given experiment, it does not predict it. The result cannot be derived
from the elementary fact that a decision matrix is a proper score rule, In

the case of a bet, we have the decision matrix illustrated in Figure 6.

E not-~E
’ A. Bet on F a2 g
u
u
B. Bet on not~E -1 .
l-u
Figure 6
Payoff matrix for simple bet,
(standard bet of 1 unit)
s

where l-u/u are the appropriate odds for a positive bet on an event with
probability u., Maximization of expected payoff would require selecting A

1f the individual's belief was that the probability of E is greater than u,
otherwise B. The derived score rule for this matrix is not concave, and in
general, the average objective expected score for a group is not necessarily
less than the objective expected score of the group average — 1t depends on
the unknown objective probabilities. For example, for a group of two, with
u= .4, if the objective probability is p = .6 and individual one thought
the probability of E was .5 and individual two thought the probability was
2, then the average of the probabilities is .35, which would lead to a bet

on B, The group expected payoff would be -.33, whereas the average expected

payoff would be .083,
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The published study by Robert Winkler is an experiment witn bets on

football games by graduate students and faculty at the University of

(19)

Indiana. The study was concerned primarily with assessing the probability

estimates of the subjects in terms of informational score rules, but fincludes
the performance in terms of monetary payoffs for hypothetical bets, Though
hypothetical, the bets were realistic in the sense that if they had been placed
the computed payoffs would have been realized.

The relevant results of this study are presented in Table I. The out-

comes are expressed in terms of net gain per dollar bet.

Table I
Bets on Big Ten Bets on NFL
Games Games
All subjects -.119 -.091
Consensus -.094 -.031

Winkler adds, "Moreover,... a consensus consisting of the faculty subjects

alone ... did even better."

If a different betting strategy was employed, namely one where the

amount of the bet depended on the point spread quoted by the bookie, in this
case Bet = (E-B)2 where E is the individual's expected point spread computed
from his probabilities, and B is the bookie's reported point spread, the

results are even more dramatic.

Table II
Big Ten NFL
All subjects -.179 -.085

Consensus .291 -.011
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These results are similar to an unpublished study conducted at the RAND
Corporation in the early exploratory phase of the group judgment project. In
this case, the group was a group of horse-race handicappers, and the compari-
son was between bets placed on advice of individual handicappers and those
based on the majority vote of the handicappers. The results were similar to
those in Table I, the group advice lost less money than the average individual
advice. At that time this was taken to be a negative result, hence the study
was not published!

It is difficult to compose a meaningful null hypothesis for these two
studies; thus it is hard to assess the significance of the better performance
of the group over the average performance of the individuals. Winkler's
study appears to be large enough to rule out "simple chance."

One possibility suggested by these results is that there is a basic dif-

ference between a single bet and repeated bets with a wide distribution of

odds. This observation receives some support from the gambling-house model
employed by Brown as a device for generating scoring rules.(zo) Although
Brown uses the model as a "gedanke experiment," it can be reformulated to
have a more literal interpretation. Suppose a group of individuals experi-

ence a succession of betting opportunities, each expressible by the matrix

E not-E
A, Bet on E 1/u 0 |
B. Bet on not-E 0 1/1-u J
Figure 8 ‘

Strategically Equivalent Matrix for Simple Bet
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This is obtained from ure 7 by adding 1 to all entries, giving a strategi-
cally equivalent matrix.

The sequence of opportunities can be characterized by a distribution
D(u) of the parameter u, 0 < u <1, which determines the odds offered. To
complete the model, we must assume independence between the believed prob-
abilities Qk of the members of the group and the parameter u. The decision
rule, select A if Qk > u, otherwise B, leads to a variety of expected payoffs,

depending on the distribution D(u).

P
Expectation if E occurs = f D(u) du
o VY
1
Expectation if not-E occurs = f ]1)_(::) du
P

It is easy to see that the expacted payoff is a proper score rule, since the
decision rule is a proper score rule for any given u, and the sum of a set
of score rules is a score rule.
For some distributions D(u), the expected payoff is, in fact, concave
in Q. For example, if D(u) is uniform between 0 and 1, the expectation is the
logarithm. If D(u) = ku(l-u), the quadratic rule results. The latter distribu-
tion is rather appealing, since it assumes that opportunities with extreme
odds (u close to 0 or 1) are relatively rare. However, higher order dis-
tributions of the form kur(l-u)s do not generate concave expectations. (21)
Tabulating available odds for various kinds of gambling situations would
quickly show which have distributions that are favorable for objective n-heads
vrules. There is clearly a rich area of investigation possible here, both

empirical study of distributions of opportunities, and analytic study of

appropriate distributions for various sorts of decision matrices,
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Coda

The foregoing does not add up to a complete theory of group decision.
Rather it presents a framework within which certain perceived difficulties
with group decision can Le resolved. Thus, inconsistencies between indivi-
dual and group preferences can be dealt with by anchored scales. Inconsist-
encies between individual and group probability estimates can be adjudicated
by showing that group estimates will furnish higher performance scores than
the average of individual scores.

In any given decision situation, selection of a specific group utility
measure or a specific probability aggregation technique requires conslidera-
tions not contained in the framework. Of course, there are some hints, For
many purposes, simple additive functions would appear to be acceptable
approximations.

For those social processes where group decisions are now in use (or are
desired), the group decision analysis framework offers & wider and more co-
herent set of procedures than now commonly used. In addition, the econcmic
n-heads results suggest that group decisions have a broader scope and greater
pover than has been assumed. It seems likely that group procedures would

demonstrate advantages in many contexts which at present are the province

of individual decisionmakers.
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